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Adsorbed layer structure of cationic surfactants on quartz
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Recent atomic force microscogpAFM) surface images of surfactant adsorbed at solid and solution inter-
faces have shown apparent micellar aggregates familiar from bulk self-assembly. This contradicts the classical
picture of laterally unstructured bilayers within which neutron reflectom@\ify) measurements have previ-
ously been analyzed. Applying both techniques to surfactant adsorption on quartz, we show that film thickness
and coverage parameters derived from NR results are generally consistent with those from AFM and bulk
self-assembly. NR by itself allows us to distinguish between actual bilayer and probable aggregate adsorption,
which will be of particular importance when a solution’s rheology makes AFM imaging impractical.
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Knowledge of adsorbed layer structure is important inerally unstructuredbilayen films also observed, suggesting
many classical colloidal applications including mineral flota-that adsorbed layer structure may have something in com-
tion [1] and detergency2] where adsorbed layer morphol- mon with bulk self-assembly. On the other hand, neutron
ogy may impact directly on the success of a particular forreflectometry(NR) studies 9], despite some anomalig€s0],
mulation. From a different perspective, recent studies ofare generally reported to be consistent with the conventional
mesoporous silicate formation, in bulB] and at interfaces bilayer view of adsorbed surfactarits,11]. To some extent
[4], have also raised the question of how adsorbed layer anithis contradiction has persisted, because the atomically flat
bulk self-assembly structures are related, and in particulagraphite and mica substrates to which AFM observations
how far the curvature of a bulk aggregate can be comprohave largely been restricted are not easily amenable to other
mised as precipitation of an adjacent solid proceeds. methods of experimental investigation. It might also be ar-

Traditionally, adsorbed surfactant on a mineral oxide hagued that the unusual nature of these substrates would ex-
been viewed as a laterally structureless bilayer. For a cationiplain the different interpretations of adsorbed layer structure.
surfactant on a negatively charged surface such as quartdowever, it is not essential for AFM that a substrate be
electrostatic interactions between a surfactant head grougtomically smooth. The necessary requirement is only that
and a solid surface drive an initial adsorption step whichthe surface is not rough on the same length scale as any
leaves surfactant alkyl tails exposed to water. A second laydateral structure in the adsorbed layer. Parallel AFM and NR
is then presumed to form, driven by hydrophobic attractionstudies of surfactant adsorption onto crystalline quartz are
and giving rise to surfactant molecules with head groupseported below, from which we develop a consistent picture
exposed to water and hydrophobic tails sequestered awayf the adsorbed film formed by cationic surfactants under a
from water as in a free bilay¢see Fig. 1C)][5]. This model variety of solution conditions which are known to lead to
of an adsorbed layer is at odds with the known bulk self-different aggregate shapes in bulk.
assembly behavior of amphiphilic molecules. Here molecular AFM imaging of surface aggregates was carried out in the
packing considerations are dominant, leading to the formanoncontact mode, as described previoudg]. Surfactant
tion of spherical or cylindrical micelles or bilayer structures solutions were introduced into the AFM fluid cell, and im-
even in dilute solutior[6]. Bulk solution self-assembly is aging was carried out in situ with the AFM tip deflected due
now fairly well understood, but can this be translated to arto electrostatic interactions with the adsorbed layer on the
understanding of adsorbed layer structure? substrate. The imaging force was maintained below that re-

Recent atomic force microscofpAFM) studies have re- quired to break through the adsorbed film, as determined
vealed a plethora of largely unanticipated morphologies ofrom the force-distance curve between the AFM tip and
adsorbed surfactant layers at solid and solution interfacesjuartz substratg13]. Neutron reflectometry experiments
particularly graphite and micf7]. Cylinders or hemicylin- were performed at Oak Ridge National Laboratory using the
ders are most commonly reportg8l, with spheres and lat- MIRROR beam lind 14]. Surfactant solutions were prepared

in D,O or a contrast-matched,D/H,O mixture (i.e., one
whose average neutron scattering length density was the

* Author to whom correspondence should be addressed:; electrongame as that of quartz, 4.X20 “nm™2). Specularly re-
address: g.warr@chem.usyd.edu.au flected intensities for a neutron beam passing through a
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FIG. 1. (Colorn Schematic diagram of adsorbed layer structures consistiid)o$pherical micelles(B) cylindrical micelles, andC) a
bilayer, including the film thickness and interaggregate spacidgAlso shown are examples of neutron scattering length density profiles
normal to the interfaceB(z), corresponding to each structure at the quag@Dnterface at a fractional surface coverage of 0.55. The
head-group and alkyl tails of the surfactants have different scattering length densities, but because of the arrangement of the molecules this
is only apparent in the bilayes(z).

single-crystal quartz block and reflected from the quartz-or aggregation concentration, a condition which leads to a
solution interface were recorded as a function of angle obaturated adsorbed film at the solid-solution interface.
incidence. The off-specular background, including any signal The cationic surfactant tetradecyltrimethylammonium
due to scattering from the bulk solutiph5], was subtracted bromide(TTAB) forms nearly spherical micellar aggregates
to give the reflection coefficient of the surfactant-coated in-consisting of approximately 80 molecules in bulk solution.
terface. All solutions used were above their critical micelleSmall angle neutron-scattering measureméh€ give mi-

FIG. 2. 200<200-nnf AFM
tip deflection images of (A)
spherical TTAB aggregates ad-
sorbed onto quartz from water so-
lution, (B) cylindrical TTAB ag-
gregates adsorbed onto quartz
from an aqueous 200mM NaBr so-
lution, and(C) planar DDAB bi-
layer adsorbed onto quartz from
water solution. Long-wavelength
undulations visible inB) and (C)
arise from roughness in the under-
lying quartz.
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FIG. 3. (Color) NR results for DDAB adsorbed onto quartz frad) D,O and(B) a D,O/H,O mixture contrast matched to quartz. Solid
lines show the(virtually indistinguishablg best fits of sphere, cylinder, and bilayer models for the adsorbed layer corresponding to the
derived parameters listed in Table I. The dashed linGAinis the reflectivity from clean quartz.

cellar diameters of 540.3 nm. AFM of the adsorbed layer factant,I'. NR results were fitted to three models for the
of TTAB [Fig. 2(A)] on quartz shows an array of circular adsorbed layer: spheres, cylinders, and a laterally homoge-
dots. The average nearest-neighbor distance obtained froneous layer(a bilayey, as shown schematically in Fig. 1.
this particular image was 6#90.5 nm. As expected, this is Each model has a unique scattering length density profile
somewhat greater than the bulk micelle diameter; the disg(z), which contains two parameters: an overall film thick-
tance includes the diameter of the spherical micelle plusessr, and a volume fraction of surfactant in the adsorbed
separation due to intermicellar electrostatic repulsion. Addi{ayer[20]. In the case of regular adsorbed structures such as
tion of NaBr to TTAB solutions is known to induce a sphere- cylinders or spheres, these parameters can be related to a
to-cylinder transition in the micelles at a concentration ofnearest-neighbor distance ,(Fig. 1). Figure 3 shows fits of
120 mM [17]. This too is observed in the adsorbed layer,all three models to the reflectivity curves using as an ex-
with the shape transition visible at 90-mM NaB8]. Figure  ample the bilayer-forming DDAB. Obviously it is not pos-
2(B) shows the adsorbed layer of TTAB on quartz insible to distinguish the adsorbed layer structure solely on the
200-mM NaBr to consist of parallel meandering stripes conbasis of goodness of fit; adsorbed cylinders, spheres, and
sistent with full cylindrical micelles. The spacing betweenbilayers all seem plausible. A similar goodness of fit was
these micelles is 490.5 nm. In order to generate a true observed for the TTAB reflectivity data both with and with-
bilayer adsorbed film we chose the double-chained surfactamiut electrolytes. The best-fit parameters for each of these
didodecyldimethylammonium bromide(DDAB), which  models are summarized in Table I.
forms bilayer structures directly in bulk solutigi9], and The models of the adsorbed film structure are discrimi-
indeed the AFM image of its adsorbed layer shows a laternated using bulk solution contrast variation. The fitted pa-
ally homogenous film with no periodic structufdsg. 2(C)]. rameters and the derived surface excesses must agree for
Coverage of the surface appears to be complete, with nboth solution contrasts. Furthermore it is expected that the
patches or holes evident. thickness of the adsorbed film will be similar to the bulk
In all cases we note that the AFM results indicate a simi-solution aggregate dimensions, and that electrostatic repul-
larity between adsorbed layer structures and those familiar ision between aggregates in films composed of spheres or
bulk self-assembly. NR experiments on the same surfactamylinders will result in a separation between aggregates. In-
systems but in BO and a BQO/H,O mixture contrast tuitively it is also expected that the fractional surface cover-
matched to quartz also reveal the presence of adsorbed swge of a genuine bilayer forming surfactant will be complete
factant. Whereas AFM yields a detailed picture of lateral(i.e., unity), and hence consistent with the AFM image
structure, it provides little in the way of quantitative infor- shown in Fig. 2C). The interfacial model which best fulfills
mation, and little about the adsorbed layer structure normathese criteria for each system are shaded in Table I.
to the interface. NR is sensitive to the details of the scatter- As Table | shows, the surface coverage or amount ad-
ing length density profile normal to the interface, and can besorbed determined by NR is independent of the model for the
used to unambiguously obtain the amount of adsorbed suadsorbed layer when quartz and solution are contrast
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TABLE I. Fits to adsorbed layer structure for cationic surfactant systems on quartz from neutron reflec-
tometry. Consistent fits to NR and AFM images for each system are set in bold, showing agreement between
adsorbed amounts in the,0 and quartz contrast-matched@H,O measurements. Also listed are the film
thicknesses and nearest-neighbor spacingsfrom NR fitting and AFM images, showing agreement be-
tween the two techniques for the best fit NR case.

NR in contrast-matched

NR in D,O D,OH,0 AFM
r d T r d T d
(umolm®  (m)  (m) (wmolm?) (hm)  (nm)  (nm)
TTAB Spheres 6.60.6 5.3+0.3 4.6:04 6.50.4 5.20.3 4.6:0.3 6.2-0.5
Cylinders 6.1-0.6 5.1+0.5 3.6:0.4 6.4*0.3 6.0+0.3 4.0:0.2
Bilayer 5.4+0.5 2.7+0.3 6.4+x0.3 3.3x0.1

TTAB+200 mM NaBr Spheres 730.3 5.2:0.2 4701 6.9£0.3 4.7+0.2 4.4-0.2
Cylinders 7.0x0.4 5.5:0.3 4.0:0.2 6.9-0.3 5.2:0.2 3.9-0.2 4.9-0.5

Bilayer 6.3-0.4 3.0-0.2 6.8+0.3 3.220.1
DDAB Spheres 4703 3.0:0.2 3.20.2 4.9x0.2 3.5x0.2 3.6:0.2
Cylinders 4.5-0.3 2.5-0.2 2.6:0.2 4.8+0.2 3.3+0.1 3.1+0.1
Bilayer 4.2+0.2 2.1+0.2 4.8:0.2 2.6:0.1

matched[21]. However, different adsorbed layer structuresvalues very close to those fat, requiring that the charged
in D,O yield different fitted adsorbed amounts in two of the surfaces of the supposed adsorbed micelles are in contact
three cases shown. For TTAB with and without added elecwith those of their neighbors. This unrealistically tight pack-
trolytes, the bilayer structure can be eliminated. The best-fing is another indicator of a true bilayer structure for this
NR adsorbed amounts also agree with results from adsor@adsorbed film. To summarize the information available from
tion isotherms for TTAB on silica at naturpH [22], and the  the NR results: for TTAB and TTAB NaBr the paired mea-
increase in adsorbed amount with addition of salt is consissurements give surface coverages, layer thickness, and pack-
tent with expectations. Added salt electrostatically screenig separations calculated assuming micellar aggregate ad-
interactions between adsorbed micelles, allowing them tsorption that are consistefé.g.,d>7), while if we assume
pack more closely together and, in the case shown, induceabilayer the surface coverage results faxDdisagree with
sphere-to-cylinder transition. Adsorbed amounts can also béhe definite value given by the contrast-matched samples; for
converted to a fractional surface coverage using the molaDDAB, while the surface coverage values are in general
volumes of adsorbed surfactants. NR shows that bilayeragreement for all models, the full surface coverage calcu-
forming DDAB has a fractional coverage of 0:88.02, lated from the molar volume assuming a bilayer (0.98
which is consistent with the complete surface coverage ob=0.02) and the overly close packing if we assume micellar
served by AFM. TTAB, both with and without added elec- structures =) strongly suggest the former morphology.
trolytes, has much lower fractional surface coverages. TTABrhroughout the film parameters thus obtained agree well
alone has a surface coverage of @4B02 (sphere fif, and  with the dimensions of bulk surfactant structures. While dis-
with 200-mM electrolyte 0.5 0.03 (sphere fit or 0.57  criminating between spherical and cylindrical adsorbed mi-
+0.02 (cylinder fit). This less than unity surface coverage celles is not possible by NR alofi24]; clearly it is possible
has previously been rationalized as a “patchy bilaygTor  to distinguish between adsorbed bilayers and adsorbed mi-
a partial surface coverage. Such fractional surface coveragesllar aggregates solely from NR data at different solution
are a natural consequence of the existence of adsorbed ngentrasts on the basis of physically reasonable surface cov-
celles which can pack to a geometrical maximum fraction oferages and putative intermicellar spacings. We note that this
0.60 for spheres or 0.79 for cylinders. degree of complementarity between NR and AFM observa-
Table | lists nearest-neighbor spacings for various adtions can be expected to assume greater importance in deter-
sorbed structures derived from NR and AFM. Values for themining adsorbed surfactant morphologies when the solu-
various TTAB measurements agree reasonably well, considion’s rheology makes AFM imaging impracticalfor
ering thatd is derived indirectly from NR, whereas AFM example, viscoelastic solutiof0]).
reveals the lateral aggregate arrangement on the surface di- In conclusion, a self-consistent interpretation of our AFM
rectly. Also note the agreement between film thickness andnd NR measurements yields a picture of fully developed
bulk micelle diameter for TTAB with no added s@lt6]. The  adsorbed layers of micelle- and bilayer-forming surfactants
adsorbed(Table ) and free bilayer thicknesses for DDAB on quartz. Both techniques reveal adsorbed films of micelle-
(2.4+=0.1 nm from small angle x-ray scatterii@3]) are forming surfactants which exist as arrays of micelles with
likewise in good agreement with each other. Also telling isindividual structures corresponding closely to those present
that the micellar fits for the DDAB adsorbed layer gide in bulk solution. Only for the surfactant that self-assembled
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into bilayers in the bulk did we observe a true adsorbedl'echnology OrganizatiofG.G.W. and J.C.$. J.C.S. ac-
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